Wireless surveillance, in which untrusted communications links are proactively monitored by legitimate agencies, has started to garner a lot of interest for enhancing the national security. In this paper, we propose a new cell-free massive multiple-input multiple-output (CF-mMIMO) wireless surveillance system, where a large number of distributed multi-antenna aided legitimate monitoring nodes (MNs) embark on either observing or jamming untrusted communication links. To facilitate concurrent observing and jamming, a subset of the MNs is selected for monitoring the untrusted transmitters (UTs), while the remaining MNs are selected for jamming the untrusted receivers (URs). We analyze the performance of CF-mMIMO wireless surveillance and derive a closed-form expression for the monitoring success probability of MNs. We then propose a greedy algorithm for the observing vs, jamming mode assignment of MNs, followed by the conception of a jamming transmit power allocation algorithm for maximizing the minimum monitoring success probability concerning all the UT and UR pairs based on the associated long-term channel state information knowledge. In conclusion, our proposed CF-mMIMO system is capable of significantly improving the performance of the MNs compared to that of the state-of-the-art baseline. In scenarios of a mediocre number of MNs, our proposed scheme provides an 11-fold improvement in the minimum monitoring success probability compared to its co-located mMIMO benchmarker.