Although catheter ablation (CA) is still the first-line treatment for persistent atrial fibrillation (AF) patients, its limited long-term success rate has motivated clinical interest in preoperative prediction on the procedures outcome to provide optimized patient selection, limit repeated procedures, hospitalization rates, and treatment costs. To this respect, dominant frequency (DF) and amplitude of fibrillatory waves (f-waves) reflected on the ECG have provided promising results. Hence this work explores the ability of a novel set of frequency and amplitud f-waves features, such as spectral entropy (SE), spectral flatness measure (SFM), and amplitud spectrum area (AMSA), along with DF and normalized f-wave amplitude (NFWA), to improve CA outcome prediction. Despite all single indices reported statistically significant differences between patients who relapsed to AF and those who maintained sinus rhythm after a follow up of 9 months for 204 6 s-length ECG intervals extracted from 51 persistent AF patients, they obtained a limited discriminant ability ranging between 55 and 62%, which was overcome by 15 - 23% when NFWA, SE and AMSA were combined. Consequently, this combination of frequency and amplitude features of the fwaves seems to provide new insights about the atrial substrate remodeling, which could be helpful in improving preoperative CA outcome prediction.