Surrogate models are widely used in natural sciences, engineering, and machine learning to approximate complex systems and reduce computational costs. However, the current landscape lacks standardisation across key stages of the pipeline, including data collection, sampling design, model class selection, evaluation metrics, and downstream task performance analysis. This fragmentation limits reproducibility, reliability, and cross-domain applicability. The issue has only been exacerbated by the AI revolution and a new suite of surrogate model classes that it offers. In this position paper, we argue for the urgent need for a unified framework to guide the development and evaluation of surrogate models. We outline essential steps for constructing a comprehensive pipeline and discuss alternative perspectives, such as the benefits of domain-specific frameworks. By advocating for a standardised approach, this paper seeks to improve the reliability of surrogate modelling, foster cross-disciplinary knowledge transfer, and, as a result, accelerate scientific progress.