This work presents a novel approach to neural architecture search (NAS) that aims to reduce energy costs and increase carbon efficiency during the model design process. The proposed framework, called carbon-efficient NAS (CE-NAS), consists of NAS evaluation algorithms with different energy requirements, a multi-objective optimizer, and a heuristic GPU allocation strategy. CE-NAS dynamically balances energy-efficient sampling and energy-consuming evaluation tasks based on current carbon emissions. Using a recent NAS benchmark dataset and two carbon traces, our trace-driven simulations demonstrate that CE-NAS achieves better carbon and search efficiency than the three baselines.