Large Language Models (LLMs) have demonstrated a number of human-like abilities, however the empathic understanding and emotional state of LLMs is yet to be aligned to that of humans. In this work, we investigate how the emotional state of generative LLM agents evolves as they perceive new events, introducing a novel architecture in which new experiences are compared to past memories. Through this comparison, the agent gains the ability to understand new experiences in context, which according to the appraisal theory of emotion is vital in emotion creation. First, the agent perceives new experiences as time series text data. After perceiving each new input, the agent generates a summary of past relevant memories, referred to as the norm, and compares the new experience to this norm. Through this comparison we can analyse how the agent reacts to the new experience in context. The PANAS, a test of affect, is administered to the agent, capturing the emotional state of the agent after the perception of the new event. Finally, the new experience is then added to the agents memory to be used in the creation of future norms. By creating multiple experiences in natural language from emotionally charged situations, we test the proposed architecture on a wide range of scenarios. The mixed results suggests that introducing context can occasionally improve the emotional alignment of the agent, but further study and comparison with human evaluators is necessary. We hope that this paper is another step towards the alignment of generative agents.