For humans, it is often possible to predict data correlations from column names. We conduct experiments to find out whether deep neural networks can learn to do the same. If so, e.g., it would open up the possibility of tuning tools that use NLP analysis on schema elements to prioritize their efforts for correlation detection. We analyze correlations for around 120,000 column pairs, taken from around 4,000 data sets. We try to predict correlations, based on column names alone. For predictions, we exploit pre-trained language models, based on the recently proposed Transformer architecture. We consider different types of correlations, multiple prediction methods, and various prediction scenarios. We study the impact of factors such as column name length or the amount of training data on prediction accuracy. Altogether, we find that deep neural networks can predict correlations with a relatively high accuracy in many scenarios (e.g., with an accuracy of 95% for long column names).