This letter investigates the performance of content caching in a heterogeneous cellular network (HetNet) consisting of fluid antenna system (FAS)-equipped mobile users (MUs) and millimeter-wave (mm-wave) single-antenna small base stations (SBSs), distributed according to the independent homogeneous Poisson point processes (HPPP). In particular, it is assumed that the most popular contents are cached in the SBSs to serve the FAS-equipped MUs requests. To assess the system performance, we derive compact expressions for the successful content delivery probability (SCDP) and the content delivery delay (CDD) using the Gauss-Laguerre quadrature technique. Our numerical results show that the performance of cache-enabled mm-wave HetNets can be greatly improved, when the FAS is utilized at the MUs instead of traditional fixed-antenna system deployment.