Recently, reference-based image super-resolution (RefSR) has shown excellent performance in image super-resolution (SR) tasks. The main idea of RefSR is to utilize additional information from the reference (Ref) image to recover the high-frequency components in low-resolution (LR) images. By transferring relevant textures through feature matching, RefSR models outperform existing single image super-resolution (SISR) models. However, their performance significantly declines when a domain gap between Ref and LR images exists, which often occurs in real-world scenarios, such as satellite imaging. In this letter, we introduce a Domain Matching (DM) module that can be seamlessly integrated with existing RefSR models to enhance their performance in a plug-and-play manner. To the best of our knowledge, we are the first to explore Domain Matching-based RefSR in remote sensing image processing. Our analysis reveals that their domain gaps often occur in different satellites, and our model effectively addresses these challenges, whereas existing models struggle. Our experiments demonstrate that the proposed DM module improves SR performance both qualitatively and quantitatively for remote sensing super-resolution tasks.