Most state-of-the-art named entity recognition (NER) systems rely on handcrafted features and on the output of other NLP tasks such as part-of-speech (POS) tagging and text chunking. In this work we propose a language-independent NER system that uses automatically learned features only. Our approach is based on the CharWNN deep neural network, which uses word-level and character-level representations (embeddings) to perform sequential classification. We perform an extensive number of experiments using two annotated corpora in two different languages: HAREM I corpus, which contains texts in Portuguese; and the SPA CoNLL-2002 corpus, which contains texts in Spanish. Our experimental results shade light on the contribution of neural character embeddings for NER. Moreover, we demonstrate that the same neural network which has been successfully applied to POS tagging can also achieve state-of-the-art results for language-independet NER, using the same hyperparameters, and without any handcrafted features. For the HAREM I corpus, CharWNN outperforms the state-of-the-art system by 7.9 points in the F1-score for the total scenario (ten NE classes), and by 7.2 points in the F1 for the selective scenario (five NE classes).