Channel coherence time has been widely regarded as a critical parameter in the design of mobile systems. However, a prominent challenge lies in integrating electromagnetic (EM) polarization effects into the derivation of the channel coherence time. In this paper, we develop a framework to analyze the impact of polarization mismatch on the channel coherence time. Specifically, we first establish an EM channel model to capture the essence of EM wave propagation. Based on this model, we then derive the EM temporal correlation function, incorporating the effects of polarization mismatch and beam misalignment. Further, considering the random orientation of the mobile user equipment (UE), we derive a closed-form solution for the EM coherence time in the turning scenario. When the trajectory degenerates into a straight line, we also provide a closed-form lower bound on the EM coherence time. The simulation results validate our theoretical analysis and reveal that neglecting the EM polarization effects leads to overly optimistic estimates of the EM coherence time.