The development of electronic stethoscopes and wearable recording sensors opened the door to the automated analysis of bowel sound (BS) signals. This enables a data-driven analysis of bowel sound patterns, their interrelations, and their correlation to different pathologies. This work leverages a BS dataset collected from 16 healthy subjects that was annotated according to four established BS patterns. This dataset is used to evaluate the performance of machine learning models to detect and/or classify BS patterns. The selection of considered models covers models using tabular features, convolutional neural networks based on spectrograms and models pre-trained on large audio datasets. The results highlight the clear superiority of pre-trained models, particularly in detecting classes with few samples, achieving an AUC of 0.89 in distinguishing BS from non-BS using a HuBERT model and an AUC of 0.89 in differentiating bowel sound patterns using a Wav2Vec 2.0 model. These results pave the way for an improved understanding of bowel sounds in general and future machine-learning-driven diagnostic applications for gastrointestinal examinations