Bayesian nonparametric models offer a flexible and powerful framework for statistical model selection, enabling the adaptation of model complexity to the intricacies of diverse datasets. This survey intends to delve into the significance of Bayesian nonparametrics, particularly in addressing complex challenges across various domains such as statistics, computer science, and electrical engineering. By elucidating the basic properties and theoretical foundations of these nonparametric models, this survey aims to provide a comprehensive understanding of Bayesian nonparametrics and their relevance in addressing complex problems, particularly in the domain of multi-object tracking. Through this exploration, we uncover the versatility and efficacy of Bayesian nonparametric methodologies, paving the way for innovative solutions to intricate challenges across diverse disciplines.