https://github.com/steve30572/BSG.
Self-supervised learning (SSL) in graphs has garnered significant attention, particularly in employing Graph Neural Networks (GNNs) with pretext tasks initially designed for other domains, such as contrastive learning and feature reconstruction. However, it remains uncertain whether these methods effectively reflect essential graph properties, precisely representation similarity with its neighbors. We observe that existing methods position opposite ends of a spectrum driven by the graph embedding smoothness, with each end corresponding to outperformance on specific downstream tasks. Decomposing the SSL objective into three terms via an information-theoretic framework with a neighbor representation variable reveals that this polarization stems from an imbalance among the terms, which existing methods may not effectively maintain. Further insights suggest that balancing between the extremes can lead to improved performance across a wider range of downstream tasks. A framework, BSG (Balancing Smoothness in Graph SSL), introduces novel loss functions designed to supplement the representation quality in graph-based SSL by balancing the derived three terms: neighbor loss, minimal loss, and divergence loss. We present a theoretical analysis of the effects of these loss functions, highlighting their significance from both the SSL and graph smoothness perspectives. Extensive experiments on multiple real-world datasets across node classification and link prediction consistently demonstrate that BSG achieves state-of-the-art performance, outperforming existing methods. Our implementation code is available at