In the futuristic agricultural fields compatible with Agriculture 4.0, robots are envisaged to navigate through crops to perform functions like pesticide spraying and fruit harvesting, which are complex tasks due to factors such as non-geometric internal obstacles, space constraints, and outdoor conditions. In this paper, we attempt to employ Deep Reinforcement Learning (DRL) to solve the problem of 4WIS4WID mobile robot navigation in a structured, automated agricultural field. This paper consists of three sections: parameterization of four-wheel steering configurations, crop row tracking using DRL, and autonomous navigation of 4WIS4WID mobile robot using DRL through multiple crop rows. We show how to parametrize various configurations of four-wheel steering to two variables. This includes symmetric four-wheel steering, zero-turn, and an additional steering configuration that allows the 4WIS4WID mobile robot to move laterally. Using DRL, we also followed an irregularly shaped crop row with symmetric four-wheel steering. In the multiple crop row simulation environment, with the help of waypoints, we effectively performed point-to-point navigation. Finally, a comparative analysis of various DRL algorithms that use continuous actions was carried out.