The escalating volumes of textile waste globally necessitate innovative waste management solutions to mitigate the environmental impact and promote sustainability in the fashion industry. This paper addresses the inefficiencies of traditional textile sorting methods by introducing an autonomous textile analysis pipeline. Utilising robotics, spectral imaging, and AI-driven classification, our system enhances the accuracy, efficiency, and scalability of textile sorting processes, contributing to a more sustainable and circular approach to waste management. The integration of a Digital Twin system further allows critical evaluation of technical and economic feasibility, providing valuable insights into the sorting system's accuracy and reliability. The proposed framework, inspired by Industry 4.0 principles, comprises five interconnected layers facilitating seamless data exchange and coordination within the system. Preliminary results highlight the potential of our holistic approach to mitigate environmental impact and foster a positive shift towards recycling in the textile industry.