This review presents an in-depth study of the literature on segmentation methods applied in dental imaging. Ten segmentation methods were studied and categorized according to the type of the segmentation method (region-based, threshold-based, cluster-based, boundary-based or watershed-based), type of X-ray images used (intra-oral or extra-oral) and characteristics of the dataset used to evaluate the methods in the state-of-the-art works. We found that the literature has primarily focused on threshold-based segmentation methods (54%). 80% of the reviewed papers have used intra-oral X-ray images in their experiments, demonstrating preference to perform segmentation on images of already isolated parts of the teeth, rather than using extra-oral X-rays, which show tooth structure of the mouth and bones of the face. To fill a scientific gap in the field, a novel data set based on extra-oral X-ray images are proposed here. A statistical comparison of the results found with the 10 image segmentation methods over our proposed data set comprised of 1,500 images is also carried out, providing a more comprehensive source of performance assessment. Discussion on limitations of the methods conceived over the past year as well as future perspectives on exploiting learning-based segmentation methods to improve performance are also provided.