Artery and vein (AV) classification of retinal images is a key to necessary tasks, such as automated measurement of arteriolar-to-venular diameter ratio (AVR). This paper comprehensively reviews the state-of-the art in AV classification methods. To improve on previous methods, a new Local Bi- nary Pattern-based method (LBP) is proposed. Beside its simplicity, LBP is robust against low contrast and low quality fundus images; and it helps the process by including additional AV texture and shape information. Experimental results compare the performance of the new method with the state-of-the art; and also methods with different feature extraction and classification schemas.