Students are increasingly using online materials to learn new subjects or to supplement their learning process in educational institutions. Issues regarding gender bias have been raised in the context of formal education and some measures have been proposed to mitigate them. However, online educational materials in terms of possible gender bias and stereotypes which may appear in different forms are yet to be investigated in the context of search bias in a widely-used search platform. As a first step towards measuring possible gender bias in online platforms, we have investigated YouTube educational videos in terms of the perceived gender of their narrators. We adopted bias measures for ranked search results to evaluate educational videos returned by YouTube in response to queries related to STEM (Science, Technology, Engineering, and Mathematics) and NON-STEM fields of education. For this, we propose automated pipeline to annotate narrators' perceived gender in YouTube videos for analysing perceived gender bias in online education.