Automated machine learning (AutoML) aims to select and configure machine learning algorithms and combine them into machine learning pipelines tailored to a dataset at hand. For supervised learning tasks, most notably binary and multinomial classification, aka single-label classification (SLC), such AutoML approaches have shown promising results. However, the task of multi-label classification (MLC), where data points are associated with a set of class labels instead of a single class label, has received much less attention so far. In the context of multi-label classification, the data-specific selection and configuration of multi-label classifiers are challenging even for experts in the field, as it is a high-dimensional optimization problem with multi-level hierarchical dependencies. While for SLC, the space of machine learning pipelines is already huge, the size of the MLC search space outnumbers the one of SLC by several orders. In the first part of this thesis, we devise a novel AutoML approach for single-label classification tasks optimizing pipelines of machine learning algorithms, consisting of two algorithms at most. This approach is then extended first to optimize pipelines of unlimited length and eventually configure the complex hierarchical structures of multi-label classification methods. Furthermore, we investigate how well AutoML approaches that form the state of the art for single-label classification tasks scale with the increased problem complexity of AutoML for multi-label classification. In the second part, we explore how methods for SLC and MLC could be configured more flexibly to achieve better generalization performance and how to increase the efficiency of execution-based AutoML systems.