Textual data are commonly used as auxiliary information for modeling user preference nowadays. While many prior works utilize user reviews for rating prediction, few focus on top-N recommendation, and even few try to incorporate item textual contents such as title and description. Though delivering promising performance for rating prediction, we empirically find that many review-based models cannot perform comparably well on top-N recommendation. Also, user reviews are not available in some recommendation scenarios, while item textual contents are more prevalent. On the other hand, recent graph convolutional network (GCN) based models demonstrate state-of-the-art performance for top-N recommendation. Thus, in this work, we aim to further improve top-N recommendation by effectively modeling both item textual content and high-order connectivity in user-item graph. We propose a new model named Attentive Graph-based Text-aware Recommendation Model (AGTM). Extensive experiments are provided to justify the rationality and effectiveness of our model design.