Identifying physical traits and emotions based on system-sensed physical activities is a challenging problem in the realm of human-computer interaction. Our work contributes in this context by investigating an underlying connection between head movements and corresponding traits and emotions. To do so, we utilize a head movement measuring device called eSense, which gives acceleration and rotation of a head. Here, first, we conduct a thorough study over head movement data collected from 46 persons using eSense while inducing five different emotional states over them in isolation. Our analysis reveals several new head movement based findings, which in turn, leads us to a novel unified solution for identifying different human traits and emotions through exploiting machine learning techniques over head movement data. Our analysis confirms that the proposed solution can result in high accuracy over the collected data. Accordingly, we develop an integrated unified solution for real-time emotion and trait identification using head movement data leveraging outcomes of our analysis.