This paper looks at the ability of large language models to participate in educational guided reading. We specifically, evaluate their ability to generate meaningful questions from the input text, generate diverse questions both in terms of content coverage and difficulty of the questions and evaluate their ability to recommend part of the text that a student should re-read based on the student's responses to the questions. Based on our evaluation of ChatGPT and Bard, we report that, 1) Large language models are able to generate high quality meaningful questions that have high correlation with the input text, 2) They generate diverse question that cover most topics in the input text even though this ability is significantly degraded as the input text increases, 3)The large language models are able to generate both low and high cognitive questions even though they are significantly biased toward low cognitive question, 4) They are able to effectively summarize responses and extract a portion of text that should be re-read.