We study the power of deep neural networks (DNNs) with sigmoid activation function. Recently, it was shown that DNNs approximate any $d$-dimensional, smooth function on a compact set with a rate of order $W^{-p/d}$, where $W$ is the number of nonzero weights in the network and $p$ is the smoothness of the function. Unfortunately, these rates only hold for a special class of sparsely connected DNNs. We ask ourselves if we can show the same approximation rate for a simpler and more general class, i.e., DNNs which are only defined by its width and depth. In this article we show that DNNs with fixed depth and a width of order $M^d$ achieve an approximation rate of $M^{-2p}$. As a conclusion we quantitatively characterize the approximation power of DNNs in terms of the overall weights $W_0$ in the network and show an approximation rate of $W_0^{-p/d}$. This more general result finally helps us to understand which network topology guarantees a special target accuracy.