As systems in smart manufacturing become increasingly complex, producing an abundance of data, the potential for production failures becomes increasingly more likely. There arises the need to minimize or eradicate production failures, one of which is by means of anomaly detection. However, with the deployment of anomaly detection systems, there are many aspects to be considered. In this paper, an overview of the components, benefits, challenges, methods, and open problems of anomaly detection in smart manufacturing and robotic finishing systems are discussed.