The influence of artificial intelligence (AI) within the field of nuclear medicine has been rapidly growing. Many researchers and clinicians are seeking to apply AI within PET, and clinicians will soon find themselves engaging with AI-based applications all along the chain of molecular imaging, from image reconstruction to enhanced reporting. This expanding presence of AI in PET imaging will result in greater demand for educational resources for those unfamiliar with AI. The objective of this article to is provide an illustrated guide to the core principles of modern AI, with specific focus on aspects that are most likely to be encountered in PET imaging. We describe convolutional neural networks, algorithm training, and explain the components of the commonly used U-Net for segmentation and image synthesis.