We study Online Convex Optimization (OCO) with adversarial constraints, where an online algorithm must make repeated decisions to minimize both convex loss functions and cumulative constraint violations. We focus on a setting where the algorithm has access to predictions of the loss and constraint functions. Our results show that we can improve the current best bounds of $ O(\sqrt{T}) $ regret and $ \tilde{O}(\sqrt{T}) $ cumulative constraint violations to $ O(\sqrt{E_T(f)}) $ and $ \tilde{O}(\sqrt{E_T(g)}) $, respectively, where $ E_T(f) $ and $ E_T(g) $ represent the cumulative prediction errors of the loss and constraint functions. In the worst case, where $ E_T(f) = O(T) $ and $ E_T(g) = O(T) $ (assuming bounded loss and constraint functions), our rates match the prior $ O(\sqrt{T}) $ results. However, when the loss and constraint predictions are accurate, our approach yields significantly smaller regret and cumulative constraint violations. Notably, if the constraint function remains constant over time, we achieve $ \tilde{O}(1) $ cumulative constraint violation, aligning with prior results.