Billions of interconnected Internet of Things (IoT) sensors and devices collect tremendous amounts of data from real-world scenarios. Big data is generating increasing interest in a wide range of industries. Once data is analyzed through compute-intensive Machine Learning (ML) methods, it can derive critical business value for organizations. Powerfulplatforms are essential to handle and process such massive collections of information cost-effectively and conveniently. This work introduces a distributed and scalable platform architecture that can be deployed for efficient real-world big data collection and analytics. The proposed system was tested with a case study for Predictive Maintenance of Home Appliances, where current and vibration sensors with high acquisition frequency were connected to washing machines and refrigerators. The introduced platform was used to collect, store, and analyze the data. The experimental results demonstrated that the presented system could be advantageous for tackling real-world IoT scenarios in a cost-effective and local approach.