Accurate 3D object detection is a critical component of autonomous driving, enabling vehicles to perceive their surroundings with precision and make informed decisions. LiDAR sensors, widely used for their ability to provide detailed 3D measurements, are key to achieving this capability. However, variations between training and inference data can cause significant performance drops when object detection models are employed in different sensor settings. One critical factor is beam density, as inference on sparse, cost-effective LiDAR sensors is often preferred in real-world applications. Despite previous work addressing the beam-density-induced domain gap, substantial knowledge gaps remain, particularly concerning dense 128-beam sensors in cross-domain scenarios. To gain better understanding of the impact of beam density on domain gaps, we conduct a comprehensive investigation that includes an evaluation of different object detection architectures. Our architecture evaluation reveals that combining voxel- and point-based approaches yields superior cross-domain performance by leveraging the strengths of both representations. Building on these findings, we analyze beam-density-induced domain gaps and argue that these domain gaps must be evaluated in conjunction with other domain shifts. Contrary to conventional beliefs, our experiments reveal that detectors benefit from training on denser data and exhibit robustness to beam density variations during inference.