Given the recent success of diffusion in producing natural-sounding synthetic speech, we investigate how diffusion can be used in speaker adaptive TTS. Taking cues from more traditional adaptation approaches, we show that adaptation can be included in a diffusion pipeline using conditional layer normalization with a step embedding. However, we show experimentally that, whilst the approach has merit, such adaptation alone cannot approach the performance of Transformer-based techniques. In a second experiment, we show that diffusion can be optimally combined with Transformer, with the latter taking the bulk of the adaptation load and the former contributing to improved naturalness.