Open-pit mine change detection (CD) in high-resolution (HR) remote sensing images plays a crucial role in mineral development and environmental protection. Significant progress has been made in this field in recent years, largely due to the advancement of deep learning techniques. However, existing deep-learning-based CD methods encounter challenges in effectively integrating neighborhood and scale information, resulting in suboptimal performance. Therefore, by exploring the influence patterns of neighborhood and scale information, this paper proposes an Integrated Neighborhood and Scale Information Network (INSINet) for open-pit mine CD in HR remote sensing images. Specifically, INSINet introduces 8-neighborhood-image information to acquire a larger receptive field, improving the recognition of center image boundary regions. Drawing on techniques of skip connection, deep supervision, and attention mechanism, the multi-path deep supervised attention (MDSA) module is designed to enhance multi-scale information fusion and change feature extraction. Experimental analysis reveals that incorporating neighborhood and scale information enhances the F1 score of INSINet by 6.40%, with improvements of 3.08% and 3.32% respectively. INSINet outperforms existing methods with an Overall Accuracy of 97.69%, Intersection over Union of 71.26%, and F1 score of 83.22%. INSINet shows significance for open-pit mine CD in HR remote sensing images.