The comprehensiveness of vehicle-to-everything (V2X) recognition enriches and holistically shapes the global Birds-Eye-View (BEV) perception, incorporating rich semantics and integrating driving scene information, thereby serving features of trajectory prediction, decision-making and driving planning. Utilizing V2X message sets to form BEV format proves to be an effective perception method for connected and automated vehicles (CAVs). Specifically, MAP, SPAT and RSI data contributes to the achievement of road connectivity, synchronized traffic signal navigation and obstacle warning. Moreover, using time-sequential BSMs information from multiple vehicles allows for the perception of current state and the prediction of future trajectories. Therefore, this paper develops a comprehensive autonomous driving model that relies on BEV-V2X perception, Interacting Multiple model Unscented Kalman Filter (IMM-UKF)-based trajectory prediction, and deep reinforcement learning (DRL)-based decision making and planing. We establish a DRL environment with reward-shaping methods to formulate a unified set of optimal driving behaviors that encompass obstacle avoidance, lane changes, overtaking, turning maneuver, and synchronized traffic signal navigation. Consequently, a complex traffic intersection scenario was simulated, and the well-trained model was applied for driving control. The observed driving behavior closely resembled that of an experienced driver, exhibiting anticipatory actions and revealing notable operational highlights of driving policy.