Research in dolphin communication and cognition requires detailed inspection of audible dolphin signals. The manual analysis of these signals is cumbersome and time-consuming. We seek to automate parts of the analysis using modern deep learning methods. We propose to learn an autoencoder constructed from convolutional and recurrent layers trained in an unsupervised fashion. The resulting model embeds patterns in audible dolphin communication. In several experiments, we show that the embeddings can be used for clustering as well as signal detection and signal type classification.