The rule extraction literature contains the notion of a fidelity-accuracy dilemma: when building an interpretable model of a black box function, optimising for fidelity is likely to reduce performance on the underlying task, and vice versa. I reassert the relevance of this dilemma for the modern field of explainable artificial intelligence, and highlight how it is compounded when the black box is an agent interacting with a dynamic environment. I then discuss two independent research directions - building white box agents and interpreting black box agents - which are both coherent and worthy of attention, but must not be conflated by researchers embarking on projects in the domain of agent interpretability.