We present a gridless sparse iterative covariance-based estimation method based on alternating projections for direction-of-arrival (DOA) estimation. The gridless DOA estimation is formulated in the reconstruction of Toeplitz-structured low rank matrix, and is solved efficiently with alternating projections. The method improves resolution by achieving sparsity, deals with single-snapshot data and coherent arrivals, and, with co-prime arrays, estimates more DOAs than the number of sensors. We evaluate the proposed method using simulation results focusing on co-prime arrays.