Dementia and especially Alzheimer's disease (AD) are the most common causes of cognitive decline in elderly people. A spread of the above mentioned mental health problems in aging societies is causing a significant medical and economic burden in many countries around the world. According to a recent World Health Organization (WHO) report, it is approximated that currently, worldwide, about 47 million people live with a dementia spectrum of neurocognitive disorders. This number is expected to triple by 2050, which calls for possible application of AI-based technologies to support an early screening for preventive interventions and a subsequent mental wellbeing monitoring as well as maintenance with so-called digital-pharma or beyond a pill therapeutical approaches. This paper discusses our attempt and preliminary results of brainwave (EEG) techniques to develop digital biomarkers for dementia progress detection and monitoring. We present an information geometry-based classification approach for automatic EEG-derived event related responses (ERPs) discrimination of low versus high task-load auditory or tactile stimuli recognition, of which amplitude and latency variabilities are similar to those in dementia. The discussed approach is a step forward to develop AI, and especially machine learning (ML) approaches, for the subsequent application to mild-cognitive impairment (MCI) and AD diagnostics.