Smoke detection using Deep Neural Networks (DNNs) is an effective approach for early wildfire detection. However, because smoke is temporally and spatially anomalous, there are limitations in collecting sufficient training data. This raises overfitting and bias concerns in existing DNN-based wildfire detection models. Thus, we introduce WARP (Wildfire Adversarial Robustness Procedure), the first model-agnostic framework for evaluating the adversarial robustness of DNN-based wildfire detection models. WARP addresses limitations in smoke image diversity using global and local adversarial attack methods. The global attack method uses image-contextualized Gaussian noise, while the local attack method uses patch noise injection, tailored to address critical aspects of wildfire detection. Leveraging WARP's model-agnostic capabilities, we assess the adversarial robustness of real-time Convolutional Neural Networks (CNNs) and Transformers. The analysis revealed valuable insights into the models' limitations. Specifically, the global attack method demonstrates that the Transformer model has more than 70\% precision degradation than the CNN against global noise. In contrast, the local attack method shows that both models are susceptible to cloud image injections when detecting smoke-positive instances, suggesting a need for model improvements through data augmentation. WARP's comprehensive robustness analysis contributed to the development of wildfire-specific data augmentation strategies, marking a step toward practicality.