In this paper we show that misclassification attacks against face-recognition systems based on deep neural networks (DNNs) are more dangerous than previously demonstrated, even in contexts where the adversary can manipulate only her physical appearance (versus directly manipulating the image input to the DNN). Specifically, we show how to create eyeglasses that, when worn, can succeed in targeted (impersonation) or untargeted (dodging) attacks while improving on previous work in one or more of three facets: (i) inconspicuousness to onlooking observers, which we test through a user study; (ii) robustness of the attack against proposed defenses; and (iii) scalability in the sense of decoupling eyeglass creation from the subject who will wear them, i.e., by creating "universal" sets of eyeglasses that facilitate misclassification. Central to these improvements are adversarial generative nets, a method we propose to generate physically realizable attack artifacts (here, eyeglasses) automatically.