https://github.com/aliborji/spatial_attention.
The primary aim of this manuscript is to underscore a significant limitation in current deep learning models, particularly vision models. Unlike human vision, which efficiently selects only the essential visual areas for further processing, leading to high speed and low energy consumption, deep vision models process the entire image. In this work, we examine this issue from a broader perspective and propose a solution that could pave the way for the next generation of more efficient vision models. Basically, convolution and pooling operations are selectively applied to altered regions, with a change map sent to subsequent layers. This map indicates which computations need to be repeated. The code is available at