This study introduces an innovative approach for adaptive power allocation in Non-Orthogonal Multiple Access (NOMA) systems, enhanced by the integration of spaceborne and terrestrial signals through a Reconfigurable Intelligent Surface (RIS). We develop an adaptive mechanism to adjust the power distribution between spaceborne and terrestrial signals according to variations in environmental conditions and elevation angles. This mechanism employs a sophisticated transition model that combines Gaussian Mixture Models with Log-Normal distributions to adaptively counteract the detrimental impacts of atmospheric attenuation and urban shadowing. These adaptive power adjustments significantly enhance system capacity, particularly improving the Signal-to-Interference-plus-Noise Ratio under diverse operational scenarios. Simulation studies confirm the efficacy of our method within an RIS-enhanced framework, showing an approximate 20\% increase in system capacity through optimized power management between spaceborne and terrestrial signals.