The hybridisation of robot-assisted gait training and functional electrical stimulation (FES) can provide numerous physiological benefits to neurological patients. However, the design of an effective hybrid controller poses significant challenges. In this over-actuated system, it is extremely difficult to find the right balance between robotic assistance and FES that will provide personalised assistance, prevent muscle fatigue and encourage the patient's active participation in order to accelerate recovery. In this paper, we present an adaptive hybrid robot-FES controller to do this and enable the triadic collaboration between the patient, the robot and FES. A patient-driven controller is designed where the voluntary movement of the patient is prioritised and assistance is provided using FES and the robot in a hierarchical order depending on the patient's performance and their muscles' fitness. The performance of this hybrid adaptive controller is tested in simulation and on one healthy subject. Our results indicate an increase in tracking performance with lower overall assistance, and less muscle fatigue when the hybrid adaptive controller is used, compared to its non adaptive equivalent. This suggests that our hybrid adaptive controller may be able to adapt to the behaviour of the user to provide assistance as needed and prevent the early termination of physical therapy due to muscle fatigue.