Anomaly detection in industrial systems is crucial for preventing equipment failures, ensuring risk identification, and maintaining overall system efficiency. Traditional monitoring methods often rely on fixed thresholds and empirical rules, which may not be sensitive enough to detect subtle changes in system health and predict impending failures. To address this limitation, this paper proposes, a novel Attention-based convolutional autoencoder (ABCD) for risk detection and map the risk value derive to the maintenance planning. ABCD learns the normal behavior of conductivity from historical data of a real-world industrial cooling system and reconstructs the input data, identifying anomalies that deviate from the expected patterns. The framework also employs calibration techniques to ensure the reliability of its predictions. Evaluation results demonstrate that with the attention mechanism in ABCD a 57.4% increase in performance and a reduction of false alarms by 9.37% is seen compared to without attention. The approach can effectively detect risks, the risk priority rank mapped to maintenance, providing valuable insights for cooling system designers and service personnel. Calibration error of 0.03% indicates that the model is well-calibrated and enhances model's trustworthiness, enabling informed decisions about maintenance strategies