Physical movement therapy is a crucial method of rehabilitation aimed at reinstating mobility among patients facing motor dysfunction due to neurological conditions or accidents. Such therapy is usually featured as patient-specific, repetitive, and labor-intensive. The conventional method, where therapists collaborate with patients to conduct repetitive physical training, proves strenuous due to these characteristics. The concept of robot-assisted rehabilitation, assisting therapists with robotic systems, has gained substantial popularity. However, building such systems presents challenges, such as diverse task demands, uncertainties in dynamic models, and safety issues. To address these concerns, in this paper, we proposed a bilateral teleoperation system for rehabilitation. The control scheme of the system is designed as an integrated framework of impedance control and disturbance observer where the former can ensure compliant human-robot interaction without the need for force sensors while the latter can compensate for dynamic uncertainties when only a roughly identified dynamic model is available. Furthermore, the scheme allows free switching between tracking tasks and physical human-robot interaction (pHRI). The presented system can execute a wide array of pre-defined trajectories with varying patterns, adaptable to diverse needs. Moreover, the system can capture therapists' demonstrations, replaying them as many times as necessary. The effectiveness of the teleoperation system is experimentally evaluated and demonstrated.