Recent advancements in Large Language Models (LLMs) have catalyzed the development of sophisticated frameworks for developing LLM-based agents. However, the complexity of these frameworks r poses a hurdle for nuanced differentiation at a granular level, a critical aspect for enabling efficient implementations across different frameworks and fostering future research. Hence, the primary purpose of this survey is to facilitate a cohesive understanding of diverse recently proposed frameworks by identifying common workflows and reusable LLM-Profiled Components (LMPCs).