Word embeddings are real-valued word representations able to capture lexical semantics and trained on natural language corpora. Models proposing these representations have gained popularity in the recent years, but the issue of the most adequate evaluation method still remains open. This paper presents an extensive overview of the field of word embeddings evaluation, highlighting main problems and proposing a typology of approaches to evaluation, summarizing 16 intrinsic methods and 12 extrinsic methods. I describe both widely-used and experimental methods, systematize information about evaluation datasets and discuss some key challenges.