We present a modification of the superposition calculus that is meant to generate consequences of sets of first-order axioms. This approach is proven to be sound and deductive-complete in the presence of redundancy elimination rules, provided the considered consequences are built on a given finite set of ground terms, represented by constant symbols. In contrast to other approaches, most existing results about the termination of the superposition calculus can be carried over to our procedure. This ensures in particular that the calculus is terminating for many theories of interest to the SMT community.