We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $\epsilon n$ arbitrary outliers. We wish to estimate a $p$-dimensional parameter $b^*$ given such sample of a label-feature pair $(y,x)$ satisfying $y=\langle x,b^*\rangle+\xi$ with heavy-tailed $(x,\xi)$. We only assume $x$ is $L^4-L^2$ hypercontractive with constant $L>0$ and has covariance matrix $\Sigma$ with minimum eigenvalue $1/\mu^2>0$ and bounded condition number $\kappa>0$. The noise $\xi$ can be arbitrarily dependent on $x$ and nonsymmetric as long as $\xi x$ has finite covariance matrix $\Xi$. We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(\Sigma,\Xi)$ nor the operator norm of $\Xi$. With probability at least $1-\delta$, our proposed estimator attains the statistical rate $\mu^2\Vert\Xi\Vert^{1/2}(\frac{p}{n}+\frac{\log(1/\delta)}{n}+\epsilon)^{1/2}$ and breakdown-point $\epsilon\lesssim\frac{1}{L^4\kappa^2}$, both optimal in the $\ell_2$-norm, assuming the near-optimal minimum sample size $L^4\kappa^2(p\log p + \log(1/\delta))\lesssim n$, up to a log factor. To the best of our knowledge, this is the first computationally tractable algorithm satisfying simultaneously all the mentioned properties. Our estimator is based on a two-stage Multiplicative Weight Update algorithm. The first stage estimates a descent direction $\hat v$ with respect to the (unknown) pre-conditioned inner product $\langle\Sigma(\cdot),\cdot\rangle$. The second stage estimate the descent direction $\Sigma\hat v$ with respect to the (known) inner product $\langle\cdot,\cdot\rangle$, without knowing nor estimating $\Sigma$.