Graph Convolutional Networks (GCNs) have been very effective in addressing the issue of various graph-structured related tasks, such as node classification and graph classification. However, extensive research has shown that GCNs are vulnerable to adversarial attacks. One of the security threats facing GCNs is the backdoor attack, which hides incorrect classification rules in models and activates only when the model encounters specific inputs containing special features (e.g., fixed patterns like subgraphs, called triggers), thus outputting incorrect classification results, while the model behaves normally on benign samples. The semantic backdoor attack is a type of the backdoor attack where the trigger is a semantic part of the sample; i.e., the trigger exists naturally in the original dataset and the attacker can pick a naturally occurring feature as the backdoor trigger, which causes the model to misclassify even unmodified inputs. Meanwhile, it is difficult to detect even if the attacker modifies the input samples in the inference phase as they do not have any anomaly compared to normal samples. Thus, semantic backdoor attacks are more imperceptible than non-semantic ones. However, existed research on semantic backdoor attacks has only focused on image and text domains, which have not been well explored against GCNs. In this work, we propose a black-box Semantic Backdoor Attack (SBA) against GCNs. We assign the trigger as a certain class of nodes in the dataset and our trigger is semantic. Through evaluation on several real-world benchmark graph datasets, the experimental results demonstrate that our proposed SBA can achieve almost 100% attack success rate under the poisoning rate less than 5% while having no impact on normal predictive accuracy.