Estimating the number of clusters and underlying cluster structure in a dataset is a crucial task. Real-world data are often unlabeled, complex and high-dimensional, which makes it difficult for traditional clustering algorithms to perform well. In recent years, a matrix reordering based algorithm, called "visual assessment of tendency" (VAT), and its variants have attracted many researchers from various domains to estimate the number of clusters and inherent cluster structure present in the data. However, these algorithms fail when applied to high-dimensional data due to the curse of dimensionality, as they rely heavily on the notions of closeness and farness between data points. To address this issue, we propose a deep-learning based framework for cluster structure assessment in complex, image datasets. First, our framework generates representative embeddings for complex data using a self-supervised deep neural network, and then, these low-dimensional embeddings are fed to VAT/iVAT algorithms to estimate the underlying cluster structure. In this process, we ensured not to use any prior knowledge for the number of clusters (i.e k). We present our results on four real-life image datasets, and our findings indicate that our framework outperforms state-of-the-art VAT/iVAT algorithms in terms of clustering accuracy and normalized mutual information (NMI).