Medical image classification and segmentation based on deep learning (DL) are emergency research topics for diagnosing variant viruses of the current COVID-19 situation. In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis. Based on this situation, some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise. However, although DL methods have a stunning performance in medical image processing, the limited datasets can be a challenge in developing the accuracy of diagnosis at the human level. In addition, deep learning algorithms face the challenge of classifying and segmenting medical images in three or even multiple dimensions and maintaining high accuracy rates. Consequently, with a guaranteed high level of accuracy, our model can classify the patients' CT images into three types: Normal, Pneumonia and COVID. Subsequently, two datasets are used for segmentation, one of the datasets even has only a limited amount of data (20 cases). Our system combined the classification model and the segmentation model together, a fully integrated diagnostic model was built on the basis of ResNet50 and 3D U-Net algorithm. By feeding with different datasets, the COVID image segmentation of the infected area will be carried out according to classification results. Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal. For future medical use, embedding the model into the medical facilities might be an efficient way of assisting or substituting doctors with diagnoses, therefore, a broader range of the problem of variant viruses in the COVID-19 situation may also be successfully solved.