We propose Multi-Antenna (MA) Towards Inband Shift Keying (TISK): a new multi-carrier radio concept to cope with critical link budgets. In contrast to common proposals that rely on analog beamforming at both transmitter and receiver, MA-TISK does not require beam alignment. The transmitted signals have all constant envelope in continuous time, which allows for efficient, low-cost power amplification and up-conversion. The concept is compatible with any linear PSK-modulation as well as pulse position modulation. Each sub-carrier is sent over a separate antenna that is equipped with a voltage-controlled oscillator. The phases of these oscillators are controlled by digital baseband. Temporal signal combining makes up for the lack of beamforming gain at the transmitter. A common message may be broadcast to many receivers, simultaneously. Demodulation can be efficiently implemented by means of fast Fourier transform. MA-TISK does not suffer from spectral re-growth issues plaguing other constant envelope modulations like GMSK. Almost rectangular signal spectra similar to those for linear modulation with root-raised-cosine pulse shaping are possible. For the 100 MHz-wide spectral mask of 5G downlink, QPSK-modulation allows for 160 MBit/s with 5.74 MHz subcarrier spacing when using 16 transmit antennas. The wide carrier spacing makes the signals insensitive to Doppler effects. There is no loss in link budget gain compared to spatial beamforming at the transmitter.